




### **Storage Economics - Theme**

- World-wide economy is forcing new types of economic reviews to justify large IT spending
  - -New people and perspectives are getting in the decision process
  - -New metrics are being considered

• Price ≠ Cost

• Price-per-MB is the wrong metric in making storage decisions

- Hidden costs are everywhere (Labor, Maintenance)
- Capital expense (CAPEX) is not under pressure
- Operating expense (OPEX) is paramount
- Cost reductions opportunities do exist in your storage infrastructure
  - -New technologies, topologies, operation effectiveness



## An Economic Opportunity Data Point...

## Cost reductions options do exist in your storage infrastructure!

For every 12TB of installed and usable disk capacity....



....there is a *net* \$1M OPEX reduction potential!



Waste Reduction ~25% Outage time reduce ~20% Mgmt Labor Effort ~15% Maintenance Fees ~15% Environmental ~ 10% Misc Ops Efficiency ~5% Other ~ 10%

\*Of course, "your mileage may vary". Net payback typically realized in 3 years.

© 2006 Hitachi Data Systems



### Activities to Drive-down Storage Costs

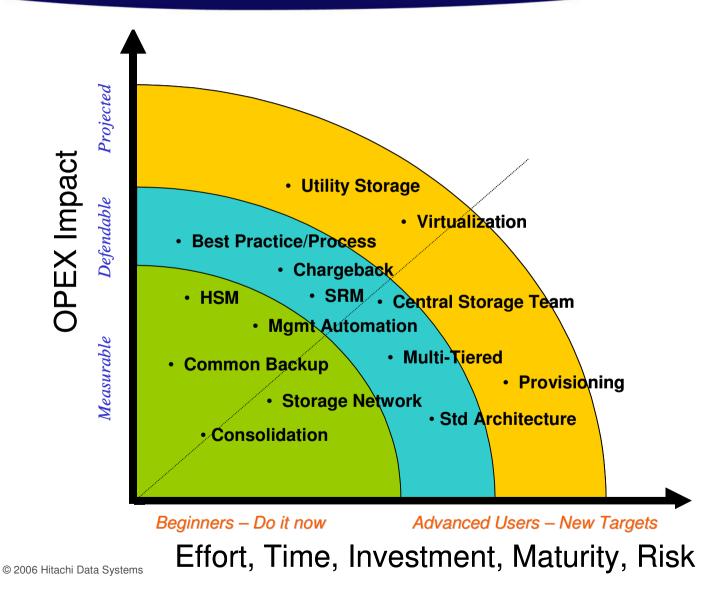
#### How Can YOU Reduce OPEX in Storage Infrastructure<sup>2</sup>

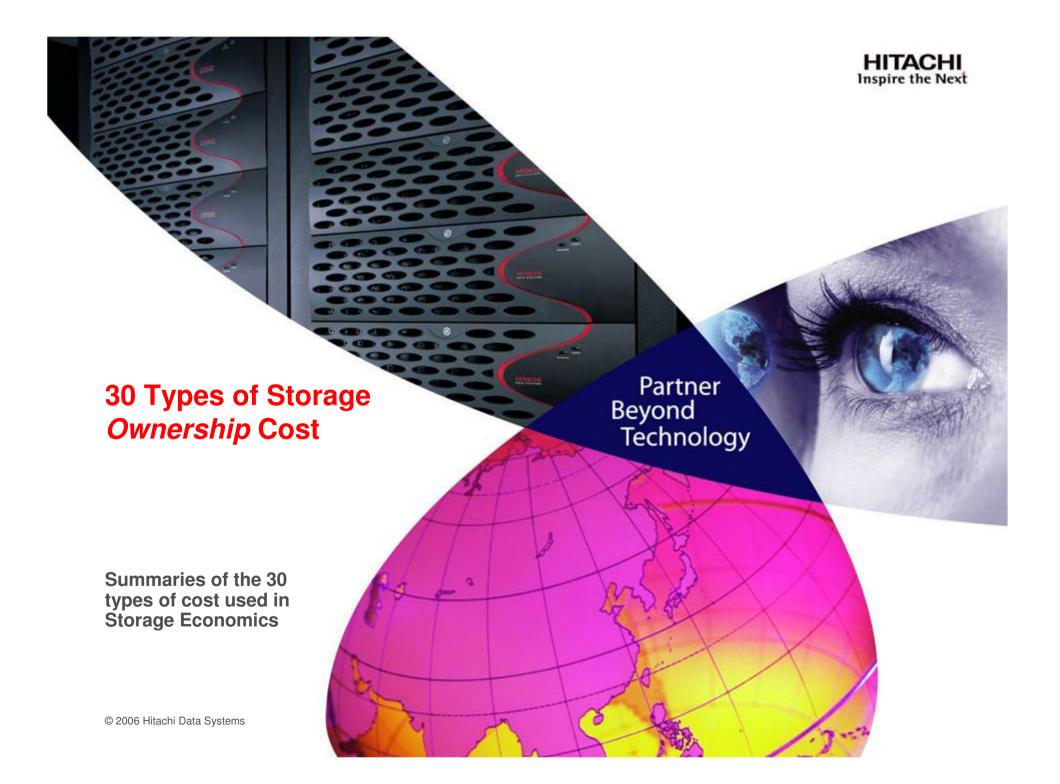
#### Storage consolidation

- Fewer, larger frames that are easier to manage
- Utilization and operations efficiency

#### Implementing networked storage

- Separation of disk and servers
- Long distance, improved protection


#### • Building and managing with storage architectures


- Consistent, structured, certified strategies
- Operational, technical & organization architectures
- Central storage team
- Multi-tiered storage services
  - Multiple price points to meet various storage demands
- Invest in best practices and management processes
  - Operations, staff skills, document the proven methods





### Methods, Actions to Reduce Storage Costs





## General Categories that Constitute Storage Cost of Ownership

### 1. CAPEX Costs

- Lease, Depreciation payments
- Cost of capital
- Residuals or scrap value

### 2. OPEX Costs

- Maintenance contracts
- Electricity

### 3. Labor

- Storage Management labor
- Contractor labor
- Work efforts, tasks

### 4. Business Impact

- Downtime
- Staff productivity
- Loss of revenue
- Opportunity Loss
- Cost of performance

### 5. Risk

- Business resumption
- Loss of data
- Processing loss, revenue loss
- Opportunity costs

### 6. Compliance

- Potential company risk, exposure
- Public scrutiny
- Financial penalties
- 7. Misc.
  - Buying more than needed
  - Buying assets prematurely
  - Not realizing the useful life

HITACHI

### 30 Detailed Categories of Storage Costs

- Storage hardware purchase avoidance
- Storage software purchase avoidance
- Hardware maintenance cost reductions
- Software license fee reductions
- Time for backup windows
- Faster recovery times catastrophic loss
- Faster recovery for non-catastrophic loss
- Storage Administration
- Weekly, common mgmt tasks
- Staff time spent for planned outages
- Business impact of planned outages
- Business impact data path availability
- Business impact storage subsystem availability
- Data center floor space
- Electricity costs (kWatt & BTU reduction)

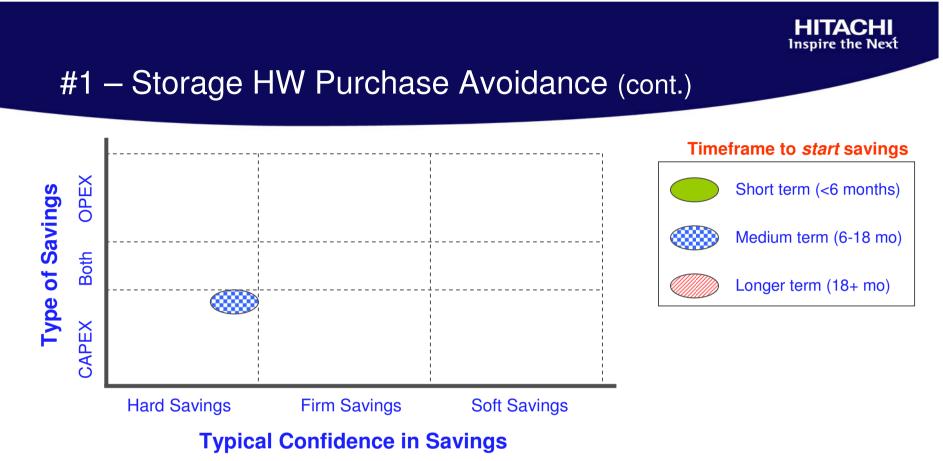
- Servers acting as Storage Gateways
- · Reducing the number of backup servers
- Storage and storage network management simplicity
- Time for workload balancing, re-provisioning storage
- Mean-time to provision (acquire, install) storage
- Compliance risk, penalties for retention, protection
- Reducing the number of tape libraries, tape drives
- Reduce developer time access to DBMS copies
- Local storage network infrastructure reduction
- Long distance circuit cost reduction
- Business impact with faster storage performance
- Batch and performance increase with FICON
- Reduced waste, fragmentation of disk storage
- Downtime due to capacity problems, mgmt errors
- Disaster protection, reduced cost of risk



## Graphing the Cost Characteristics



- We must appreciate the multiple dimensions of the savings
  - 1. CAPEX or OPEX savings (sometimes there is both)
  - 2. Hard (off the books) savings, firm or soft savings
    - Customer decides on the nature or applicability of savings
    - Highly subjective with firm and soft savings
  - 3. Time frame to start saving the money after the investments




## #1 – Storage HW Purchase Avoidance

#### • Description

- It is good if one investment can avoid other investments
- New storage architectures may reduce or eliminate other types of investments
- This category focuses on CAPEX or hardware purchases in the future

- A key factor in this category is to calculate and project new growth
- Finding new ways to handle growth can avoid future CAPEX
- Look at upgrade cost avoidance as well as net-new costs
- Typical effort or activities to reduce these costs
  - -SATA disk may replace the need to purchase/upgrade tape libraries
  - -SANs may improve utilization to avoid other storage purchase
  - Tiered storage can reduce the costs of future storage growth



#### Other Comments, observations

- Customer may not readily accepts future avoidance, so you may have to use comparative cash-flow approach to show multi-year CAPEX forecasts
  - Then use NPV of the cash flow to show present value or today's \$ of the capital avoidance
- Reduction of CAPEX also reduced OPEX (i.e., maintenance)
- Most people will spend money to save money, with justification

## #2 – Storage SW Purchase

### Description

- Similar in construction to HW avoidance
- Any time one investment can avoid other investments, it is good
- New storage architectures can reduce or eliminate other types of software investments or software upgrades
- This category focuses on CAPEX or software purchases in the future

- Software often in balancing effort with labor, staff investment
- Be aware of SW costs based on capacity, location, controllers, etc.
- The more complex the storage architecture often leads to more software
- Typical effort or activities to reduce these costs
  - Virtualization and consolidation can reduce or avoid controller-based software licenses, start moving to capacity-based licenses
  - Tiered storage can reduce the SW need for subordinate storage



### #2 – Storage SW Purchase (cont.)



#### • Other Comments, observations

- Reduction of SW licensed can also reduced OPEX (i.e., SW maintenance fees)
- Software does not tend to have the same price erosion as hardware
- Future software needs (and costs) are hard to predict since new SW products are released frequently (don't know that you need it until it is announced)
- Buying software to offset/avoid other software requires delicate rationale



## #3 – Hardware Maintenance Cost

#### • Description

- Most hardware, after an initial warranty period, incur monthly maintenance fees
- As hardware is (pre-maturely) de-commissioned, future maintenance costs may be avoided

#### • Dependencies, Relationships

 Early retirement of assets may incur a scrap-value or write-off of hardware assets

#### • Typical effort or activities to reduce/reclaim these costs

- Collapsing and consolidating storage assets (SAN, storage arrays, tape systems) will reduce future maintenance costs
- Demoting older arrays to Tier n where the SLA does not require strong support, maintenance costs can be cancelled, T&M costs would replace maintenance on an as-needed basis.



### #3 – Hardware Maintenance Cost (cont.)



- Other Comments, observations
  - Be aware that it takes effort to cancel maintenance contracts
  - Sometimes the follow-through is not good and the asset maintenance arrangements are never changed
  - -Some customer pre-pay for xx years of hardware maintenance

## #4 – Software License Fees

### • Description

- Most software, after an initial warranty period, incur monthly maint fees
- If software is (pre-maturely) de-commissioned, future maintenance costs may be avoided

- Remember that you date your hardware, and marry your software....
- Much more difficult to change software strategies than is hardware
- Typical effort or activities to reduce these costs
  - Collapsing and consolidating storage assets (SAN, storage arrays, tape systems) will reduce licenses and the associated fees
  - Demoting older arrays to Tier n where the SLA does not require strong support, software license fees can be cancelled

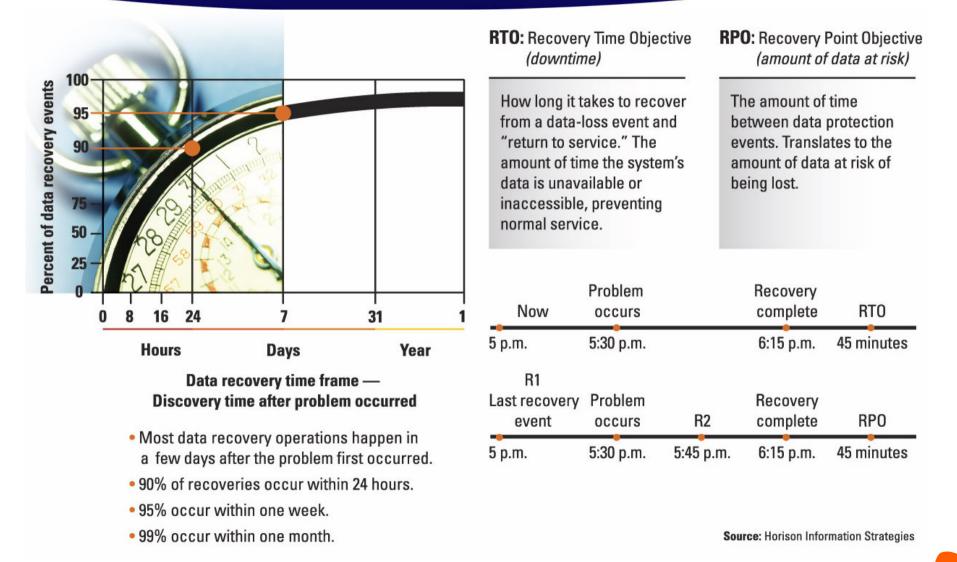


### #4 – Software License Fees (cont.)



- Other Comments, observations
  - Performing a comprehensive software audit may find old licenses anyway, without necessarily changing the architecture




## #5 – Time for Backup Windows

#### • Description

- Reducing the time to create back-ups, both in the host processing time, and in DBMS off-line time, etc.
- -When system or DBMS downtime is reduced, business impact lowered
- Dependencies, Relationships
  - -RTO, RPO
  - Backup medias, servers, backup network
  - Reducing backup windows is often related to reducing or changing backup infrastructure, target devices
- Typical effort or activities to reduce these costs
  - Moving to disk-based or VTS backup architectures
  - SAN-based or host-free backups
  - Reducing data protection of lower tiered storage in a TS architecture



### Data Recovery Profile



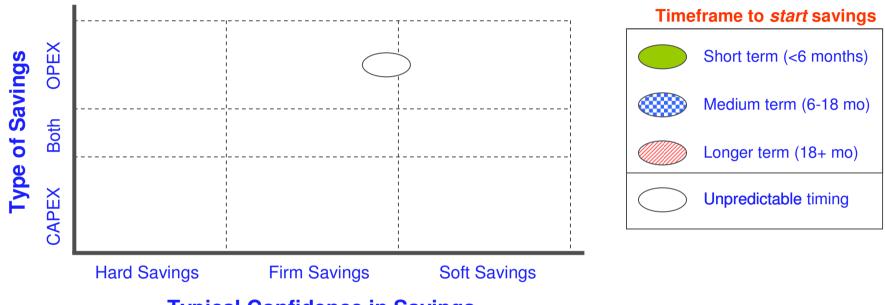


### #5 – Time for Backup Windows (cont.)



- Other Comments, observations
  - Backup time reduction is always a popular theme and work objective, but quantifying the business impact can be elusive unless is impacts business or operations

## #6 – Recovery from a Catastrophic Event

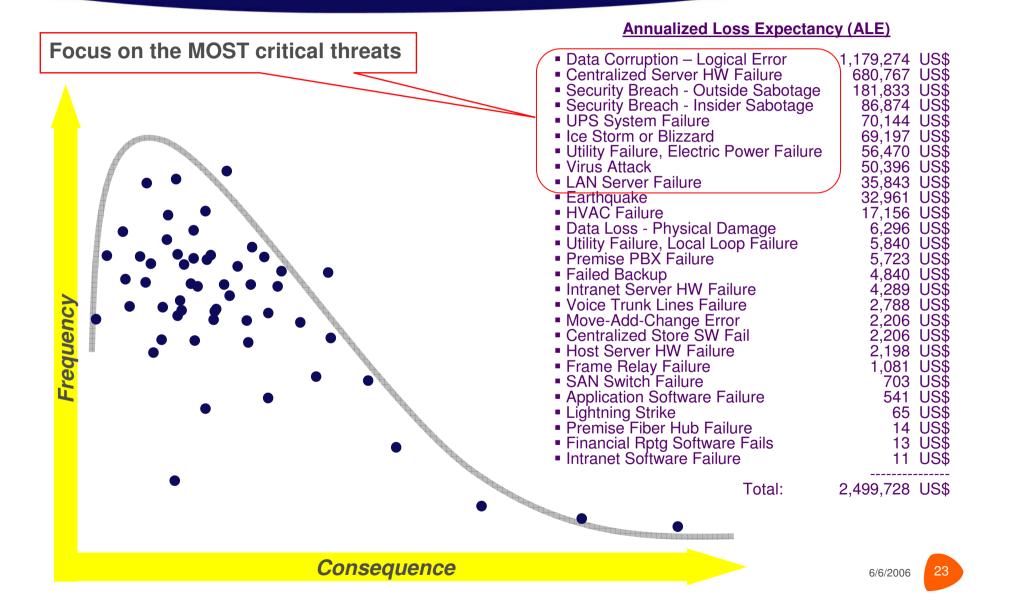

### • Description

- If/when catastrophic outages hit, IT and business will suffer outage time
- Engineering rapid recovery services can reduce application and business downtime.
- For catastrophic events, business and IT resumption should have defined value to the enterprise
- -Being able to recover *faster*, can reduce risks and loss from an outage

- Data recovery is just a fraction of the enterprise BC/DR plan
- See also category #30
- Typical effort or activities to reduce these costs
  - Local and remote replication
  - -3DC or multi-site replication and recovery options
  - -Less dependency on tape restoration, or slower media



## #6 – Recovery from a Catastrophic Event (cont.)




#### **Typical Confidence in Savings**

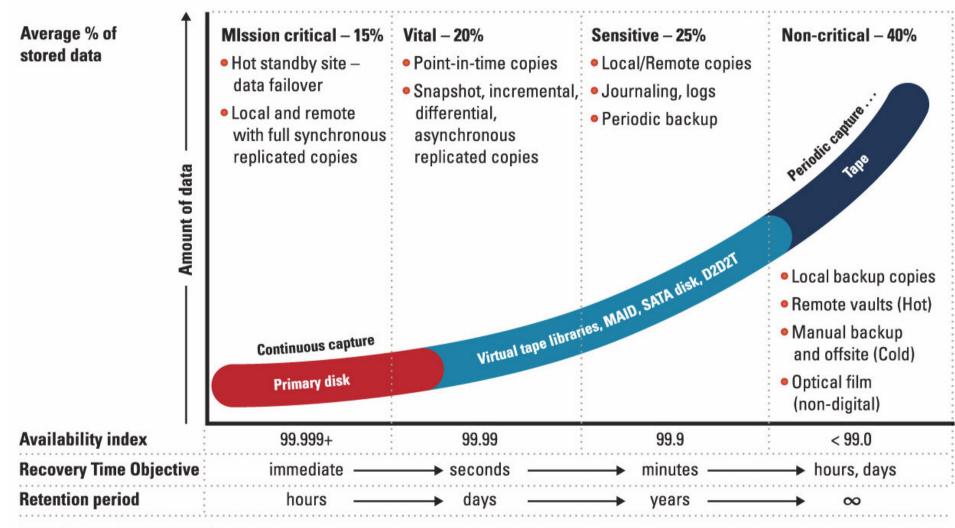
- Other Comments, observations
  - Data recovery and other business areas (people, networks, hosts, telephones) have to be aligned relative to total business resumption
  - The timeframe for savings cannot be projected since we do not know when the next catastrophic event will be

## Rank the Threats by Loss Expectancy



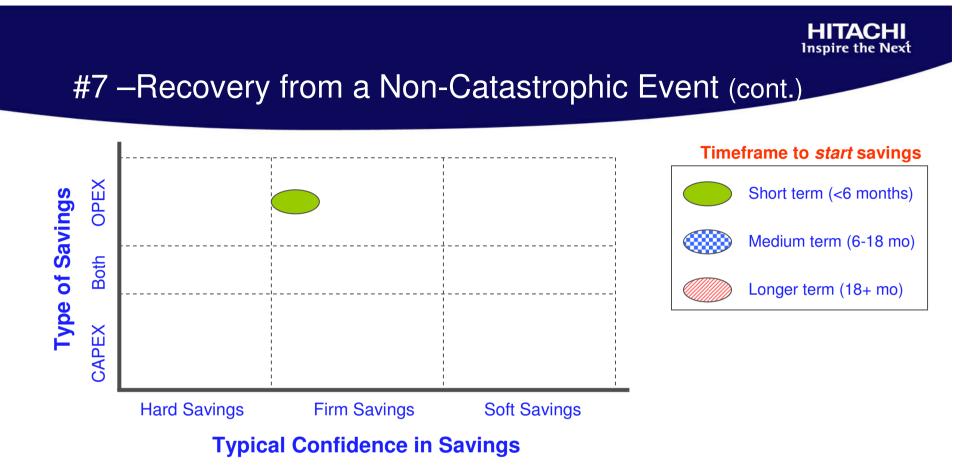


## #7 – Recovery from a Non-Catastrophic Event


### • Description

- Engineering rapid recovery services can reduce application and business downtime.
- For non-catastrophic events, faster business and IT resumption have some defined value to the enterprise
- Non-catastrophic events are more common, and faster recovery is seen as a business critical capability

- Data recovery is just a fraction of the enterprise recovery plan
- Strong ties to the backup/recovery strategies, but goes beyond these...
- Typical effort or activities to reduce these costs
  - Local replication, snap copies
  - Augment backup processes with local data protection (disk based)
  - -Less dependency on tape restoration, or slower media




## **Treating Data Protection Differently**



Source: Horison Information Strategies

© 2006 Hitachi Data Systems



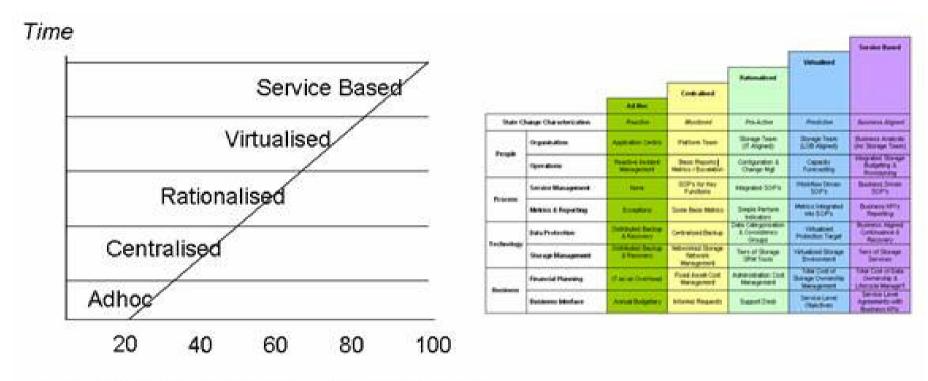
- Other Comments, observations
  - The timeframe for savings cannot be projected since we do not know when the next event will be, but it will be soon. Non-catastrophic data loss occurs very frequently
  - Disk-based solutions have to augment traditional tape options

# #8 – Storage Administration

#### Description

- Advancements in architectures, software, intelligent subsystems can reduce the aggregate full-time equivalent (FTE) staff per installed TB
- Pooled storage, Tiered Storage has higher "Managed TB-per-FTE" than standalone islands or DAS

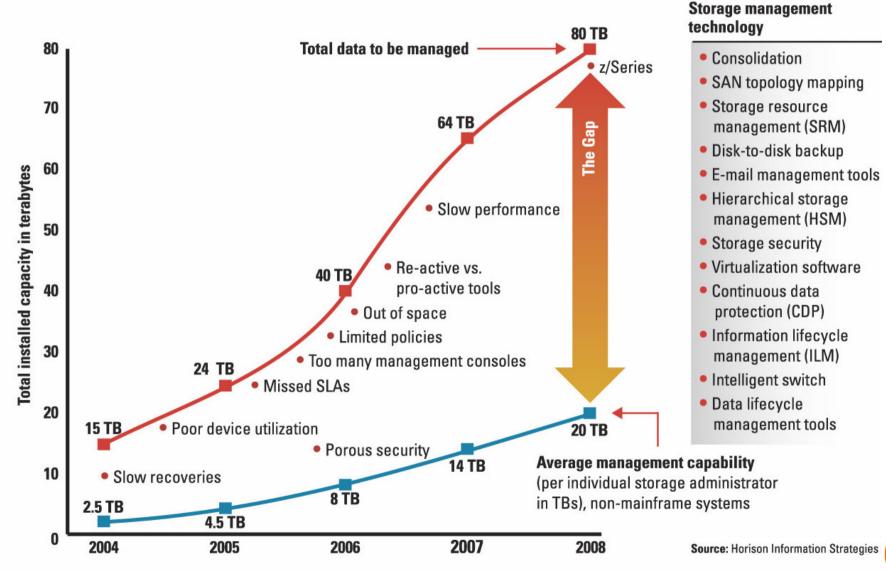
#### Dependencies, Relationships


- Cost of labor can be 35-45% of Storage Infrastructure TCO, therefore labor is a big target for cost reduction or improvement (must do more with less)
- Care in not double-counting costs associated with #9. #10, #19, #20

#### • Typical effort or activities to reduce these costs

- Storage area networks
- Larger storage arrays (consolidation)
- Tiered Storage, virtualization
- Storage areas management software
- Operational best practices and procedures
- Organization optimization for the storage infrastructure

HITACHI Inspire the Next


## Storage Management Maturity & Labor



Storage capacity manage per administrator TB/FTE



### Closing the Management Gap



29



### #8 – Storage Administration (cont.)



- Other Comments, observations
  - -TB-per-FTE is a common measurement, but not very meaningful
  - IT is without industry benchmarks or best practices (inconsistent tasks and division of labor)
  - Don't compare TB-per-FTE with others, use only as internal benchmark

### #9 – Weekly Mgmt Tasks

### • Description

- Advanced storage management software and improved practices can reduce the number of repetitive work tasks related to storage infrastructure management
- Reducing these tasks will:
  - Reduce overall staff labor needed to manage storage
  - Improve any human error factor within the management

- Care in counting both this cost and #8 Reduce Storage Mgmt Labor
- Labor savings is offset by significant investment in SW, processes
- This item can be a micro-element of the total admin labor cost factor
- Typical effort or activities to reduce/reclaim these costs
  - Storage Area Management software investments
  - Review and implementation of ITIL based best practices, processes
  - Organization improvement; elimination duplicated effort, staff



### #9 –Weekly Mgmt Tasks (cont.)



### • Other Comments, observations

- The customer has to be able to measure and know the weekly tasks involved with management (otherwise, how to measure reduction?)
- Saving time in this area does reduce workload, but not necessarily FTE
- Savings are seen as soft, labor utilization, improvement, lack of overtime, etc.

#### HITACHI Inspire the Next

## #10 – Staff/Contractor Time on Planned Outages

#### • Description

- Planned outages for capacity or microcode often involves extra time
  - Contractor or vendor time (\$1500 per incident)
  - Staff support time
- Hot microcode or upgrade on-the-fly can reduce this labor element

- Enterprise class storage, directors can handle non-disruptive upgrades
- Strong processes are needed to avoid an outage
- Each vendor's maintenance support cost, structure is different
- Typical effort or activities to reduce these costs
  - Move to enterprise class storage and network infrastructure
  - Some modular or DAS disk are the prime systems to target for replacement or change in this area

## #10 – Staff/Contractor Time on Planned Outages (cont)



- Other Comments, observations
  - High growth areas may experience multiple outage periods (monthly), this can be reduced or avoided
  - The architecture has to be rugged (People, process, products)
  - -Over-time factor for hourly people vs. salaried people @ upgrade time
  - This item can be a micro-element of the total admin labor cost factor

HITACHI Inspire the Next

## #11 – Business Impact: Planned Outages

### • Description

- Any outage, planned or unplanned, incurs an impact to the business
- Planned outages have been common and expected, but if they can be reduced, there is a business up-side to take advantage of

- Customer needs to be able to quantify more hours/period of up-time
- We cannot reduce the number of microcode changes or capacity upgrades to simply improve this cost factor
- See also cost factor #10
- Typical effort or activities to reduce/reclaim these costs
  - Some modular or DAS disk are the prime systems to target for replacement or change in this area
  - Move to enterprise class storage and network infrastructure



## #11 – Business Impact: Planned Outages (cont.)



- Other Comments, observations
  - The architecture has to be rugged (People, process, products)
  - Need to quantify more revenue or business due to more on-line time
  - Storage is only one fraction of the total on-line time
  - Savings are soft since the infrastructure is used to scheduled outages

# #12 – Business Impact: Data Path Availability

#### • Description

- The storage infrastructure starts with the storage adapter (NIC, HBA), and ends with the disk or tape system
- The data path is the first leg of the overall storage infrastructure availability rating
- Different solutions produce different proven or rated data path percentiles


#### • Dependencies, Relationships

- We are counting only the data path here; servers, applications and storage arrays also contribute to the total HA picture
- Keep in balance, data path HA as compared to the host, storage, app

#### Typical effort or activities to reduce these costs

- Highly available FC connections/fabric have the best HA features
- Upgrades from DAS and some PtP is often necessary
- NAS can be improved, but HA NAS options are also available
- Directors have better HA ratings than switched
- Topologies also impact the total data path HA rating

# Inspire the Next #12 – Business Impact: Data Path Availability (cont.)



**Typical Confidence in Savings** 

- Other Comments, observations
  - There is a balance between HA, cost, distance and performance
  - Savings timeframe is unpredictable since we cannot forecast the next data path failure

HITACHI

# #13 – Business Impact: Subsystem Availability

#### • Description

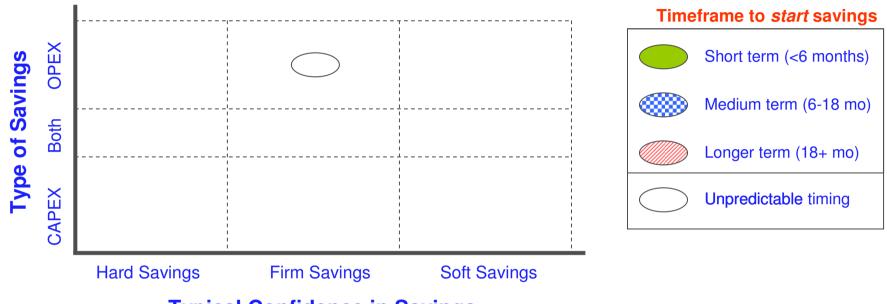
- Storage infrastructure availability relies heavily with the disk system
- Different solutions produce different rated or guaranteed HA percentiles

## • Dependencies, Relationships

- We are counting only the storage system here; servers, applications and storage network also contribute to the total HA picture
- Ability to perform non-disruptive upgrades or micro-code changes

## • Typical effort or activities to reduce these costs

- Enterprise systems are engineered for various duty cycles
  - Cache, mirroring, Multiple processors, internal control and data path
  - FC disk based systems are engineered differently then S-ATA
  - Modular systems, NAS systems, desktop systems are all different
- The core disk architecture may need to be changed out to achieve improved subsystem availability (compared to the current install base)


HITACHI Inspire the Next

# The Impact of Downtime

| Application classification<br>% Uptime<br>Minutes of unavailability per year |           | Non-critical | Operationally<br>important | Vital        | Mission critical |
|------------------------------------------------------------------------------|-----------|--------------|----------------------------|--------------|------------------|
|                                                                              |           | 99%<br>5000  | 99.9%<br>500               | 99.99%<br>50 | 99.999%<br>5     |
|                                                                              |           |              |                            |              |                  |
| Energy                                                                       | \$ 2.8 M  | \$ 233.0 M   | \$ 23.3 M                  | \$ 2.33 M    | \$ 233 K         |
| Telecom                                                                      | \$ 2.1 M  | \$ 175.0 M   | \$ 17.5 M                  | \$ 1.75 M    | \$ 175 K         |
| Finance                                                                      | \$ 1.5 M  | \$ 125.0 M   | \$ 12.5 M                  | \$ 1.25 M    | \$ 125 K         |
| Retail                                                                       | \$ 1.1 M  | \$ 91.7 M    | \$ 9.17 M                  | \$ 917 K     | \$ 91.7 K        |
| Transportation                                                               | \$ 0.67 M | \$ 55.8 M    | \$ 5.58 M                  | \$ 558 K     | \$ 55.8 K        |
| Health care                                                                  | \$ 0.63 M | \$ 53.0 M    | \$ 5.30 M                  | \$ 530 K     | \$ 53 K          |

Source: Horison Information Strategies

# #13 – Business Impact: Subsystem Availability (cont.)



**Typical Confidence in Savings** 

- Other Comments, observations
  - Since price ≠ cost, we have to be careful in matching the price with the necessary availability and duty cycle (you get what you pay for)
  - -SATA is not rated for 24x7xnever usage patterns
  - -We do not know when an unexpected sub-system outage may occur
  - -HDS 100% availability guarantee can be factored in to this category

HITACHI



## #14 – Data Center Floor space

#### • Description

- IT assets occupy raised floor space in a data center
- Lease, rental of the space, as well as power, conditioning add to the cost of space
- Reducing floor space may avoid or delay DC build-out in the future

## • Dependencies, Relationships

- Sometimes a flat rate of floor space may include power, cooling, etc.
- Newer arrays have higher TB-per-m<sup>2</sup>, therefore better use of space
- Motivated to reduce space when expansion plans are imminent

## • Typical effort or activities to reduce/reclaim these costs

- Storage and server consolidation
- Avoid capacity and frame upgrade through utilization improvements



## #14 – Data Center Floor space (cont.)



#### **Typical Confidence in Savings**

- Other Comments, observations
  - Consolidation for some DAS may not yield real space savings
    - Storage removed from the chassis, but the space is not reclaimed
  - Do not double count kVA or BTU if bundled into floor space costs
  - Some don't recognize this as savings since xx m<sup>2</sup> is a sunk cost
  - Virtualization may raise these costs by holding onto older assets
  - Moving from DAS to centralized arrays may also increase DC space

# #15 – Cost of Electricity

## • Description

- Each storage array, library, switch or gateway consumes electricity (measured in watts, Kwatts, or kVA)
- The BTU (converted to watts) required for air conditioning, cooling can also be calculated
- In addition to the direct wattage, the infrastructure may have to finance power conditioning, backup systems (generators, batteries)

#### • Dependencies, Relationships

- -Main electric bill for the DC is a real cost, but storage will only be a %
- Battery backup, UPS and power conditioning costs could double or triple the rated kVA rating of a device
- Typical effort or activities to reduce these costs
  - Consolidation to newer arrays (higher density) disk systems
  - Replacing older, less efficient systems



## #15 – Cost of Electricity (cont.)



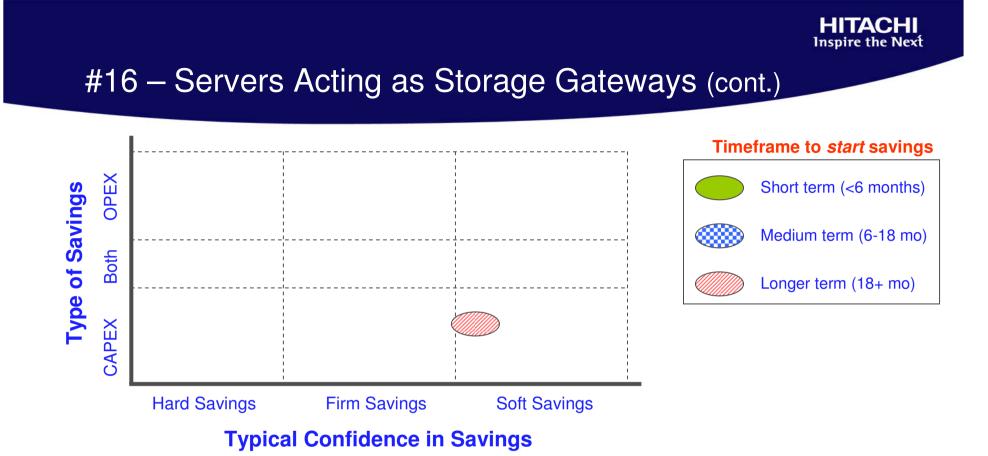
#### **Typical Confidence in Savings**

- Other Comments, observations
  - Besides monthly power costs, reducing kVA will reduce power conditioning equipment, battery backup systems
  - Electricity savings for DR w/ replication should double the costs
  - Newer systems can run 'hot', so if they hold relatively low capacities the electricity cost per TB or footprint space may be unnaturally high
  - Virtualization may raise costs by keeping older, less efficient arrays in use as lower tiered capacity



# #16 – Servers Acting as Storage Gateways

#### • Description


- Many times (Intel) servers are used as NFS or CIFS hosts to storage pools for less formal storage control
- These servers require labor, software costs, floor space

#### • Dependencies, Relationships

- Removing these servers
  - Puts the hosts back into the pool for general use
  - Reduces the risk of management, software, license fees associated with NAS pooled storage

#### • Typical effort or activities to reduce/reclaim these costs

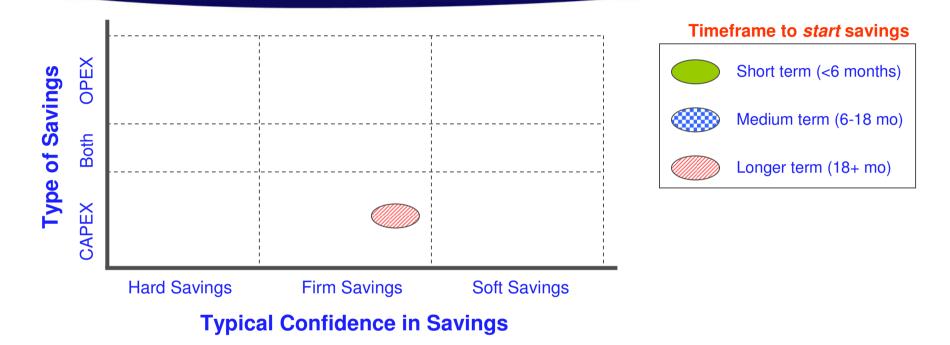
- Create a formal NFS gateway or filer architecture in front of the storage pool (NAS, iSCSI, FC, etc.)
- Adopt formal management processes and controls for all storage, regardless of the connection scheme or protocol



- Other Comments, observations
  - Investments in gateways and filers may be more expensive to purchase than small servers, but the management cost, SW cost and risk of data loss cost will off-set in the long term



#### Description


- Backup servers are expensive resources (HW, SW, labor) to manage data protection and recovery of company information
- The backup server infrastructure (clustering) can grow to be a large and complex environment on its own

#### • Dependencies, Relationships

- Backup methods, architecture and tools used will drive the number of servers
- Geographic dispersion of targets and hosts
- Typical effort or activities to reduce/reclaim these costs
  - Local copies from mirroring, snap copies, sync replication
  - Advanced data protection schemes



## #17 – Backup Servers (cont.)



- Other Comments, observations
  - Backup infrastructure optimization can reduce future CAPEX costs



# #18 – Storage Network Management

#### • Description

- Network components in the storage infrastructure are relatively new and continue to grow
- These circuits and devices need local/specialized management skills

#### • Dependencies, Relationships

- Storage architecture type, protocol type, HBA or NIC type, etc.
- Geographic location of hosts, fabrics, storage, tape
- Typical effort or activities to reduce these costs
  - Integrated SRM or storage mgmt tools
  - Consolidation of fabrics and protocols
  - Single pane of glass mgmt of storage, network elements, HBA, etc.



## #18 – Storage Network Management (cont.)



- Other Comments, observations
  - Collusion/coordination of storage network and data network teams
  - This item can be a micro-element of the total admin labor cost factor

# #19 – Time for Balancing, Performance, Reclamation

## • Description

- Labor effort needs to be spent to achieve optimal performance of storage assets, balance workloads, and reclaim space
- Abandonment of these tasks results in over-spending CAPEX when adequate resources may already exist
- Performance problems may impact processing time, customer satisfaction of revenue

#### • Dependencies, Relationships

- -Balance of the time/effort vs. the resources saved
- Skills and documented best practices of storage management
- Typical effort or activities to reduce these costs
  - Invest in ITIL or operational best practices, improvements
  - -SRM and performance enhancement software, audit and services
  - Formal or informal chargeback

# #19 – Time for Balancing, Performance, Reclamation (cont.)



# • Other Comments, observations

- Conundrum of cost of waste vs. the cost of labor
- Don't let software investments overshadow best practices and common processes that have been successfully deployed elsewhere in IT
- This item can be a sub-element of the total admin labor cost factor or weekly storage management tasks

HITACHI

# #20 – Mean-time to Provision

## Description

- Storage provisioning takes time
  - Business agility improves with faster IT resource allocation
  - Lead time to order from the vendor
  - Internal time to provision the LUNs, create volumes, etc.

#### • Dependencies, Relationships

- -Waiting on capacity can impact IT productivity, revenue potential
- Highly dependent on capacity planning effectiveness, forecasting, enduser accountability, chargeback

## • Typical effort or activities to reduce these costs

- Capacity on demand, storage utility
- -Tiered storage (unplanned capacity comes in on lower tier)
- SRM tools to manage and allocate faster, policy based intelligence



## #20 – Mean-time to Provision (cont.)

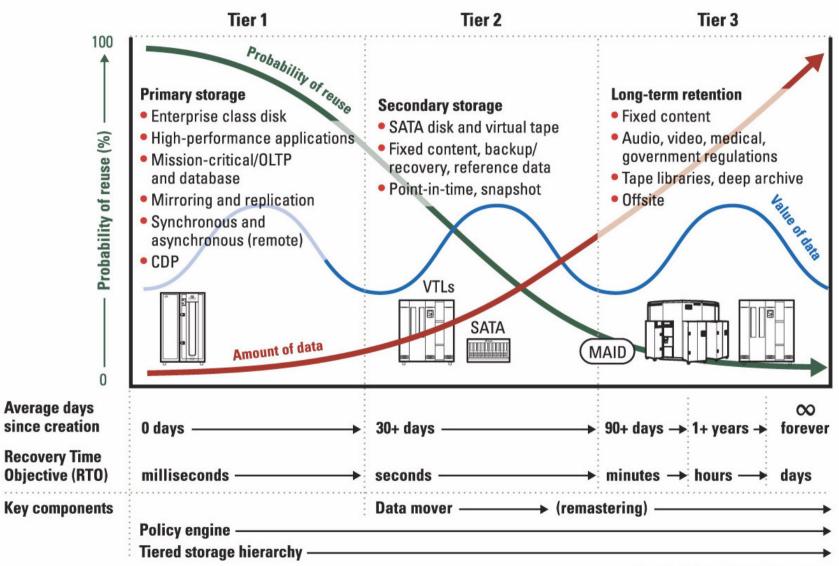


- Other Comments, observations
  - Provision and usage behaviors need to be understood in order to optimize limited resources
  - Faster provisioning cannot replace (or discourage) good forecasting, capacity planning



# #21 – Compliance Risk, Penalties

#### • Description


- If compliance requirements exist, but are unsatisfied within the storage infrastructure, there exists levels of rated risk
- Risk can be manifest in terms of
  - Public exposure
  - Financial penalty
  - Criminal liability

#### Dependencies, Relationships

- As opposed to inadvertent data loss, compliance requirements for data protection/recoverability can be seen as a risk of intentional disregard
- Can also factor in the time to deliver compliance reports, data
- Typical effort or activities to reduce these costs
  - -Archive solutions for structured (email) and unstructured data
  - Lifecycle protection for data, long term retention requirements

HITACHI Inspire the Next

## **Compliance and Retention**



57



# #21 – Compliance Risk, Penalties (cont.)



#### • Other Comments, observations

- Compliance risks differ greatly between market segments
  - Banking, finance, health care, national security etc.
- As the probability of compliance investigation increase, the cost of savings come more realistic (harder)
- -What is the ROI of your CFO not going to jail?



## #22 – Tape Drives, Libraries, Media

#### Description

- Tape infrastructure constitutes a critical protection media for most IT
- -Media costs, storage, transportation, libraries all form into storage TCO

#### • Dependencies, Relationships

 Media can be used for simple data protection, retention and disaster/business continuity activities

## • Typical effort or activities to reduce these costs

- Higher density media, drives
- -Near-line (VTS) for media reduction
- Disk augmentation (in certain cases) for data protection



# #22 – Tape Drives, Libraries, Media (cont.)



- Other Comments, observations
  - Some believe that high density S-ATA and MAID architecture can replace many tape functions
  - Density per tape can be higher than the disk (spindle)
  - Less focus on tape replacement, rather tape augmentation for data and business protection



## #23 – Developer Time Access to DBMS

#### Description

- Developers rely on data, database copies for testing, warehousing
- Limited access to copies or live DBMS can impact development time

#### • Dependencies, Relationships

- -Types of DBMS
- Version control

#### • Typical effort or activities to reduce these costs

- Snap copies or mirrors to provide near real-time access to data and DBMS several times a day, shortening development time
- Tiered Storage architecture



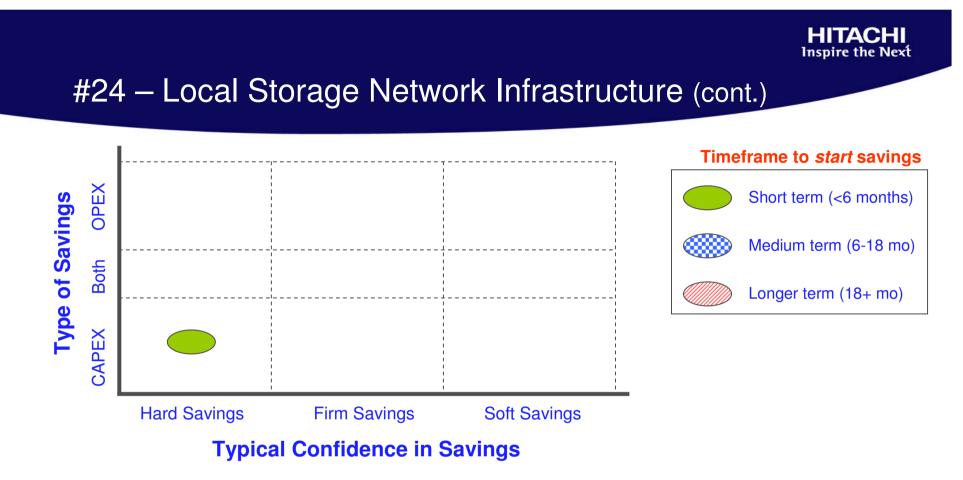
# #23 – Developer Time Access to DBMS (cont.)



- Other Comments, observations
  - Developers are typically not good at policing their storage capacity, quotas and other behavior modification techniques may be needed
  - This type of rapid access, rapid reclamation disk is best as a lower tier

# #24 – Local Storage Network Infrastructure

## • Description


- Local network segments may be used for the storage network (NAS, iSCSI using IP LAN and WAN)
- -Often a separate IP network is built and maintained for backups
- Extra effort is needed in management, configuration, security and zoning of these secondary networks used by the storage infrastructure

## • Dependencies, Relationships

- Backup and DR networks
- Data network management teams

## • Typical effort or activities to reduce/reclaim these costs

- Disk-based backup, replication and snapshots
- Re-engineering the backup architecture
- Consolidating ad-hoc CIFS and NFS networks into a unified storage (networked) pool
- Operational process, division of labor with data network teams



- Other Comments, observations
  - Data network teams tend to have good architecture, strategies and operational processes that could be adopted into the data network team



# #25 – Long Distance Circuits

#### Description

- Storage infrastructure may use long distant circuit (i.e., OC-12) for long distance connection to DR sites or tape vaults
- Monthly lease fees apply to these circuits, and are based on distance and capacity

#### • Dependencies, Relationships

- -Out of area or metro circuits are critical to DR/BC provisions
- Typical effort or activities to reduce these costs
  - -3DC designs can reduce the total bandwidth requirements
  - Tiered storage ensures that only mission critical data volume is remotely copied



## #25 – Long Distance Circuits (cont.)



- Other Comments, observations
  - Others infrastructure users, besides storage, may use some of the lambdas (circuit segments), so complete removal may not be possible



## #26 – Storage Performance

#### • Description

- -Trapped in each IT asset is the potential to run faster, more efficient
- This pent-up saving potential can be released by investing in tools or services that change the performance characteristics

#### • Dependencies, Relationships

- Revenue or transaction benefits have to be characterized according to the performance improvement
- Typical effort or activities to reduce/reclaim these costs
  - Storage performance audits and tune-ups
  - Monitoring processes, tools
  - Change to new infrastructure
    - Cache
    - Faster port speed (10GB FC), FICON
    - Faster disk type (RPM), or RAID overhead



## #26 – Storage Performance (cont.)



- Other Comments, observations
  - FICON replacement (#27) is a subset of this condition
  - Verifiable revenue improvement is often hard to show
  - This case may best be applied to high-transactional systems (eBay, stock exchange) where faster throughput = revenue



# #27 – FICON vs. ESCON Performance

#### Description

 This condition exists for mainframe systems only, and is really a sub-set of the performance cost condition outlined in #26

### • Dependencies, Relationships

- CPU and applications that can take advantage of FICON

## • Typical effort or activities to reduce/reclaim these costs

- Replace ESCON adapters, directors and channel extenders to FICON



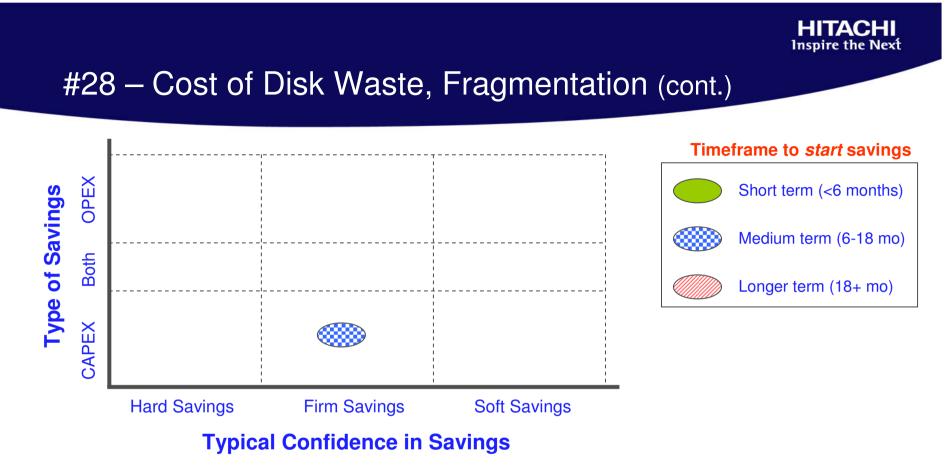
## #27 - FICON vs. ESCON Performance (cont.)



- Other Comments, observations
  - Same as #26 performance category
  - ESCON replaced as a tech refresh more often than TCO improvement
  - As a stand-alone category, this example needs to be folded into #26

# #28 – Cost of Disk Waste, Fragmentation

## • Description


- -There is buried in the sunk cost of storage an inherent cost of waste
- Stranded LUNs, unallocated/un-used volumes, DBMS white space
- This waste becomes a future CAPEX as storage is prematurely purchased to meet usable demand

## • Dependencies, Relationships

- Lack of architecture, multiple vendors, multiple SRM systems
- -No central purchasing, each storage purchase done by the projects

## • Typical effort or activities to reduce/reclaim these costs

- Advanced storage management tools
- Operational best practices
- Chargeback, quotas
- Storage Consolidation
- Virtualization



- Other Comments, observations
  - Some may argue the decline in the cost of disk negates the cost of waste; that applying labor to manage waste is more costly than the resources being reclaimed
  - Remember that price  $\neq$  cost; there is more in TCO that purchase alone

# #29 – Outage Risk Due to Mgmt Errors, Capacity

#### Description

- -25% of IT outages can be attributed to storage problems
- 20-30% of storage outages are due to poor management and configuration errors
- Identifying these potential risks, then applying the correct remedy can reduce storage-related outages

#### • Dependencies, Relationships

- Number and varieties of storage infrastructure elements (variety of vendors, products, protocols increase overall complexity)
- Typical effort or activities to reduce these costs
  - Formal development of best practices and common processes
  - -SRM and storage area management tools, monitoring methods
  - Organization optimization, including help desk and tech support

# #29 – Outage Risk Due to Mgmt Errors, Capacity (cont.)



- Other Comments, observations
  - No single tool or product is a silver bullet here, a balanced blend of training, best practices and automation tools is the best recipe

HITACHI

Inspire the Next

## #30 – Risk Related to Disaster Protection

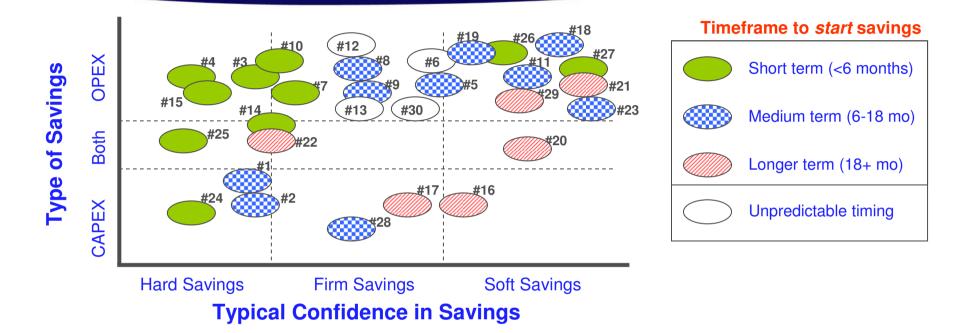
## • Description

- Companies that do not have a disaster recovery or business continuity plan (documented, tested, verified) are running with a rated risk of business outage or disruption
- A real cost to the business can be defined related to any disaster

## • Dependencies, Relationships

- DR/BC risk is similar in nature but fundamentally different from local data recovery or backups
- Servers, secondary arrays, 2<sup>nd</sup> site, long distance replication is needed
- See also category #6
- Typical effort or activities to reduce these costs
  - Formal DR/BC plan and provisions that include frequent tests, reviews
  - Intermediate plans for on-site (local) recoverability or in-area recovery
  - LD circuits, replication mechanisms, secondary hosts and storage



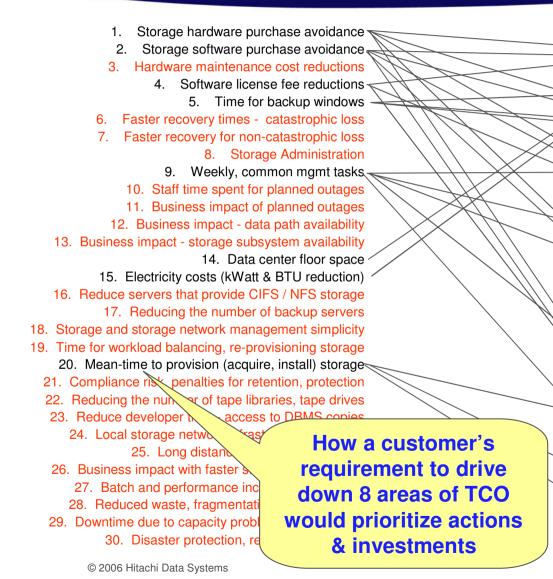

## #30 - Risk Related to Disaster Protection (cont.)

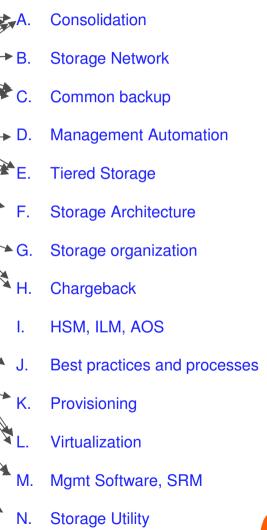


- Other Comments, observations
  - Storage and data protection only represent a fraction of the DR/BC focus or investments. All other areas have to be in place a well
  - Future outages or disaster cannot be predicted, therefore delaying this type of protection only amplifies the risk



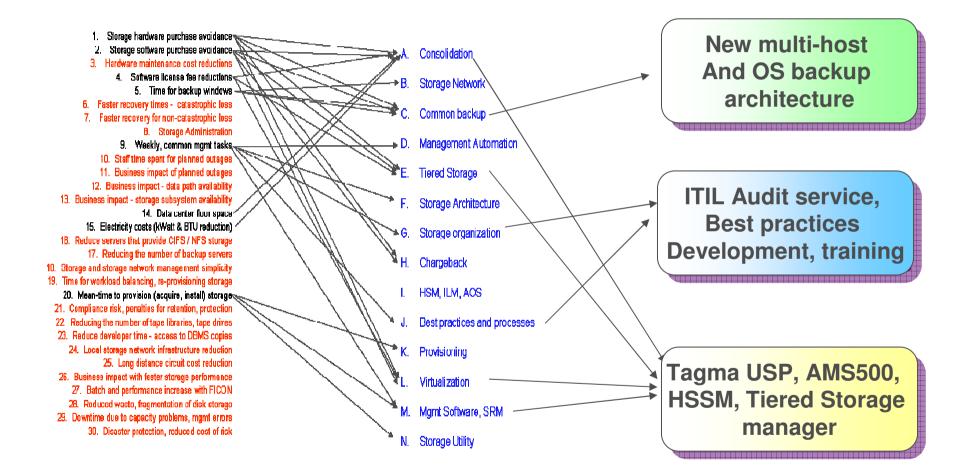
## Summary Graph of Storage Cost - Types





#### • Comments

- The placement and timing of these categories is not absolute
- Short-term, hard savings create "sweet spot ideas" for TCO reduction
- Any cost defined as 'soft' can immediately be 'hard' if the client has experienced problems or costs in the past




## Mapping the Money to the Effort Required







## The Money to the Effort to the Solution





## IT Investments and economics

- Storage Economic analysis helps to determine the "next best use" of the IT (storage) investment
  - Hardware
    - -ATA, FC disk, tape, SAN, appliances, intelligent controllers
  - Software

-Management automation, backup, replication, ILM

## Organization and People

-Training, organization realignment to storage infrastructure mgmt

#### Best practices and processes

-Filling the operational gaps (ITIL)

#### New business models for storage

-Storage utility, chargeback, multi-tiered approach

## Regulatory Compliance

-Basel II, Sarbanes-Oxley, etc.



## Conclusions

- Select the types of cost that make sense for your IT environment
  - -5-7 types of cost are typical
  - A range of hard costs blended with firm or soft to provide balance
  - Be aware of the timing, cash flow of the costs
- ROI work can be done defining investments to lower these costs
- TCO comparative analysis can use these costs for side-by-side comparisons
  - -Architectures and technology
  - Protocols
  - Vendors and products
- Choosing the types of costs that need to be reduced can often help with prioritizing the activities and investments needed to reduce the cost of storage ownership (\$1M-per-12TB rule)



## Three Critical Messages

- 1. Cost-per-MB is poor single metric for economic decisions
  - Price  $\neq$  cost; take a multi-year perspective
  - IT organizations are looking to reduce OPEX, not always CAPEX
  - Cheap disk can cost more over time, and negatively impact OPEX
  - Not all storage and SAN solutions are equal in TCO
- 2. There are OPEX reduction opportunities within your storage infrastructure !
  - On average, \$1M <u>net</u> OPEX potential savings in every 12TB of usable disk
- 3. There are specific, proven activities to <u>discover</u>, and <u>harvest</u> some of the OPEX money in storage infrastructure
  - Consolidation
  - SANs

- Multi-tiered storage
- Best practice and management
- Best Practices
- Storage management (SRM)
- Common backup
- Organization optimization

# Storage Economics Strategy (SES) Service Can Help

- GSS service designed to discover, quantify and justify storage infrastructure investments. An up-stream offering that focuses on business issues of cost, best practices and operational optimization to reduce storage OPEX
- Key qualities of this vanguard service
  - Accelerates strategic storage & SAN thinking, usually for OPEX savings
  - Closed-loop service ensures completeness and verification of objectives
  - Fast, low cost, based on solid methods and experience
  - Results in business, financial and technical terms

#### Service Deliver Phases

- 1. **Discover** understand the storage environment already in-place, non-intrusively
- 2. Assess your tactical and strategic storage needs via workshop, interviews
- 3. **Design** storage architecture(s) to meet business requirements, infrastructure
- 4. Analyze and compare ROI for design options, show the OPEX saving potential
- 5. Report findings in a format to help with business cases and justification



